首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4655篇
  免费   1172篇
  国内免费   768篇
测绘学   917篇
大气科学   320篇
地球物理   879篇
地质学   2760篇
海洋学   723篇
天文学   21篇
综合类   446篇
自然地理   529篇
  2024年   16篇
  2023年   65篇
  2022年   161篇
  2021年   213篇
  2020年   214篇
  2019年   228篇
  2018年   154篇
  2017年   254篇
  2016年   238篇
  2015年   260篇
  2014年   310篇
  2013年   373篇
  2012年   374篇
  2011年   371篇
  2010年   326篇
  2009年   322篇
  2008年   298篇
  2007年   290篇
  2006年   307篇
  2005年   272篇
  2004年   254篇
  2003年   244篇
  2002年   161篇
  2001年   138篇
  2000年   138篇
  1999年   104篇
  1998年   99篇
  1997年   70篇
  1996年   57篇
  1995年   39篇
  1994年   41篇
  1993年   33篇
  1992年   28篇
  1991年   28篇
  1990年   17篇
  1989年   17篇
  1988年   16篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1972年   3篇
  1971年   3篇
排序方式: 共有6595条查询结果,搜索用时 125 毫秒
21.
位于中国和尼泊尔边境的西藏樟木口岸是国家一类陆路通商口岸,也是西藏最大的边贸中心口岸。2015年尼泊尔大地震之后,西藏樟木口岸因多次发生滑坡灾害,而导致口岸关闭。为了调查樟木口岸区域滑坡灾害的分布和变形情况及更好的服务于区域减灾防灾,利用InSAR技术对覆盖该区域的Sentinel-1A和ALOS-2两种卫星影像数据进行了处理,并通过分析视线向年均形变速率图,圈定了17处疑似滑坡,并对其中的5处典型滑坡进行时间序列形变特征分析,监测识别出的滑坡基本沿318国道所在一侧的波曲河左岸分布。InSAR调查结果表明受地震影响樟木地区的滑坡多分布在沿波曲河左岸的陡峭山体上,中尼公路迪斯岗至友谊桥段的古滑坡出现了局部复活的现象,同时樟木镇居民所在的城区也发育有扎美拉山危岩体崩塌滑坡灾害。   相似文献   
22.
无人机在重大地质灾害应急调查中的应用   总被引:4,自引:0,他引:4  
传统的地质灾害应急调查受限于地形、天气等外界条件,不能快速全面地获取灾害的详细信息,而无人机具有灵活性强、时效性高和不受复杂地形影响等特点,在地质灾害应急调查中有独特的优势。本文以“6·24”新磨村滑坡和“10·11”白格滑坡为例,阐述了无人机数据获取及处理流程,重点介绍了无人机获取的数字地形产品在地质灾害精确描述、定性及定量分析中的应用。结果表明:无人机摄影测量技术为重大地质灾害应急调查提供了更加科学高效的现场影像采集和遥感成果处理及应用方案,为应急救灾工作的顺利实施及分析研判提供了重要数据支撑,科学有效地保证了现场施工救援人员的安全。  相似文献   
23.
无人船是海洋技术发展的产物,作为一种新型技术手段目前已在海洋调测和防务领域广泛应用.本文从无人船系统的组成、应用领域和发展现状出发,归纳总结无人船的关键技术,并研究其发展趋势.作为一种水面机动载体,无人船关键技术包括特型平台设计技术、运动控制技术和通信技术3个方面,其核心是围绕任务内容、载荷原理、使用环境特点,以应用设计、功能开发为主体的系统集成和应用.现阶段无人船主要作为传统海上工作方法的补充,在遵守、参照现有各种法规、技术标准要求的前提下,搭载已成型的船用任务载荷,按照载人船舶的作业模式、施工惯例投入各种应用.未来随着材料技术、人工智能、通信技术的发展,以及相关政策、法规的建立、健全,无人船将逐步成为一种独立的技术手段,形成一系列新的作业模式和技术方法.  相似文献   
24.
文章介绍了国外海堤生态化建设技术的研究进展,包括海堤结构改造和绿植化研究,其中,海堤结构改造包括建造阶梯式海堤、海堤表面微栖息地改造、建造栖息地长凳、模拟岩石栖息地和海堤绿植化等。国外主要对海堤表面生境进行修复,国内研究则集中在海堤生态化建设的工程技术和采用生态护坡材料对传统海堤进行改造上。在结合海堤生态化相关研究的基础上,对我国海堤生态化建设提出了完善海堤生态化建设技术规范体系、加强海堤生态化关键技术研究、开展海堤生态化适宜性分析和生态化后监管系统等建议。  相似文献   
25.
Abstract

Based on a new elasto-plastic constitutive model, this paper presents a soil–water coupled numerical prediction of the bearing capacity for shallow foundation constructed on Ballina soft clay for unconsolidated undrained (UU) and consolidated undrained (CU) conditions. This elasto-plastic constitutive Shanghai model has an advantage of describing the mechanical behaviour of over-consolidated and structured soil under different loading and drainage conditions, by using one set of material parameter. In this paper, the Shanghai model used for both UU and CU conditions has the same initial parameters obtained from laboratory test results. The loading conditions and consolidation stages vary based on construction details. The predicted bearing pressure-settlement responses for UU and CU, approves the field observation. The phenomenon of gaining the bearing capacity due to consolidation is captured and explained by the use of soil–water coupled numerical analysis with a new elasto-plastic model. The stress strain behaviour, stress paths and the decay of the structure of elements at different depths presented in this study, reveal the mechanism for the difference between UU and CU conditions to understand the foundation behaviour. Effect of the initial degree of soil structure on the bearing capacity is also addressed. Overall, this approach provides the integrated solution for the shallow foundation design problems under short and long-term loadings.  相似文献   
26.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   
27.
FluBiDi is a two-dimensional model created to simulate real events that can take days and months, as well as short events (minutes or hours) and inclusive laboratory tests. To verify the robustness of FluBiDi, it was tested using a previous study with both designed and real digital elevation models. The results highlight good agreement between the models (i.e. Mike Flood, SOBEK, ISIS 2D, and others) tested and FluBiDi (around 90% for a specific instant and 95% for the complete time simulation). In the simulated hydrographs, the discharge peak value, time to peak, and water level results were accurate, reproducing them with an error of less than 5%. The velocity differences observed in a couple of tests in FluBiDi were associated with very short periods of time (seconds). However, FluBiDi is highly accurate for simulating floods under real topographical conditions with differences of around 2 cm when water depth is around 150 cm. The average water depth and velocities are precise, and the model describes with high accuracy the pattern and extent of floods. FluBiDi has the capability to be adjusted to different types of events and only requires limited input data.  相似文献   
28.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
29.
Earthquakes are a serious natural disaster faced by countries all over the world. Research on earthquake hazard mitigation are important parts of earthquake science and is a feature of China''s development of earthquake science. In recent years, the Ministry of Science and Technology (MOST) of the People''s Republic of China, the National Natural Science Foundation of China (NSFC) and the China Earthquake Administration (CEA) have attached great importance to basic research on earthquake hazard mitigation, and new opportunities and challenges have emerged. This paper collects the applications and approvals of the National Key R&D Program and the NSFC projects undertaken by the research institutes of the CEA system in recent years. The CEA system has received funding in the 13th “Five-year Plan” for “Monitoring, Early Warning and Prevention of Major Natural Disaster”. The implementation of these projects is expected to provide support for the basic science and applied research of the CEA system. In the NSFC, the number of applications from the CEA system is relatively stable, and the funding rate is slightly higher than the average for the department of earth science. Although no detailed statistical analysis has been performed, the CEA system still has room for improvement in the application of talent and major programs. I hope that the brief review of new opportunities that have arose in recent years described in this article can provide some background and new thinking for future challenges.  相似文献   
30.
马建  黄帅堂  吴国栋 《中国地震》2019,35(3):550-557
利用微型无人机摄影测量技术,获取了博-阿断裂在乌苏通沟东岸的高精度地形、地貌数据,解译DEM数据,并结合野外调查工作,明确了断裂在乌苏通沟东岸冲洪积扇上19.3~31.1m的水平位错。分析获取的陡坎剖面,且对比陡坎两侧地貌的剥蚀程度,认为陡坎形成后受到后期水流的侵蚀,部分陡坎的高度在一定程度上被放大,断裂的实际垂直位错在0.7m左右。通过实例展示了无人机摄影技术在活动构造研究中的巨大潜力以及在微构造信息提取中的独特优势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号